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Abstract

One challenge in making online education more
effective is to develop automatic grading software
that can provide meaningful feedback. This pa-
per provides a solution to automatic grading of the
standard computation-theory problem that asks a
student to construct a deterministic finite automa-
ton (DFA) from the given description of its lan-
guage. We focus on how to assign partial grades for
incorrect answers. Each student’s answer is com-
pared to the correct DFA using a hybrid of three
techniques devised to capture different classes of
errors. First, in an attempt to catch syntactic mis-
takes, we compute the edit distance between the
two DFA descriptions. Second, we consider the en-
tropy of the symmetric difference of the languages
of the two DFAs, and compute a score that es-
timates the fraction of the number of strings on
which the student answer is wrong. Our third tech-
nique is aimed at capturing mistakes in reading of
the problem description. For this purpose, we con-
sider a description language MOSEL, which adds
syntactic sugar to the classical Monadic Second Or-
der Logic, and allows defining regular languages in
a concise and natural way. We provide algorithms,
along with optimizations, for transforming MOSEL
descriptions into DFAs and vice-versa. These allow
us to compute the syntactic edit distance of the in-
correct answer from the correct one in terms of their
logical representations. We report an experimental
study that evaluates hundreds of answers submitted
by (real) students by comparing grades/feedback
computed by our tool with human graders. Our
conclusion is that the tool is able to assign partial
grades in a meaningful way, and should be pre-
ferred over the human graders for both scalability
and consistency.

1 Introduction
There has been a lot of interest recently in of-
fering college-level education to students world-
wide via information technology. Several websites

such as EdX (https://www.edx.org/), Cours-
era (https://www.coursera.org/), and Udac-
ity (http://www.udacity.com/) are increasingly
providing online courses on numerous topics, from computer
science to psychology. Several challenges arise with this new
teaching paradigm. Since these courses, often referred to as
massive open online courses (MOOCs), are typically taken
by several thousands of students located around the world,
it is particularly hard for the instruction staff to provide
useful personalized feedback for practice problem sets and
homework assignments.

Our focus in this paper is on the problem of determinis-
tic finite automata (DFA) construction. The importance of
DFA in computer science education hardly needs justifica-
tion. Beside being part of the standardized computer science
curriculum, the concept of DFA is rich in structure and poten-
tial applications. It is useful in diverse settings such as control
theory, text editors and lexical analyzers, and models of soft-
ware interfaces. We focus on grading assignments in which
a student is asked to provide a DFA construction correspond-
ing to a regular language description. Our main goal is that
of automatically measuring how far off the student solution is
from the correct answer. This measure can then be used for
two purposes: assigning a partial grade, and providing feed-
back on why the answer is incorrect.

Figure 1 shows five solutions from the ones we collected
as part of an experiment involving students at UIUC. The so-
lutions are for the following regular language description:

L = {s | s contains the substring “ab” exactly twice}
For this problem the alphabet is Σ = {a, b}. Current tech-
nologies for this kind of problem [Aut, 2010] simply check
whether the DFA proposed by the student is semantically
equivalent to the correct one. For this particular example such
a technique would only point out that the first solution A1 is
correct, while all the other ones are wrong. Such a feedback,
however, does not tell us how wrong each solution is.

The four DFAs A2,A3,A4, and A5 in Figure 1 are repre-
sentative of different mistakes. We first concentrate on A2. In
this attempt the DFA accepts the language
L1 = {s | s contains the substring “ab” at least twice}

This example shows a common mistake in this type of as-
signments: the student misunderstood the problem. We need
an automated technique that is able to recognize this kind of
mistake. The necessary ingredient to address this task is a
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Figure 1: Example of DFA grading. The dark states are final.
Column 1 contains the name of the DFA depicted in column
2. Column 3 shows the grade computed by our tool for the
DFA with the corresponding feedback.

procedure that, given a DFA A, can synthesize a description
of the language L(A) accepted by A. Here a question that
immediately arises is: what should the description language
for L(A) be? Ideally we would like to describe L(A) in En-
glish, but such a description cannot be easily subjected to au-
tomated analysis. A better option is a logical language that
is not only efficient to reason about, but one which also pro-
vides a rich set of primitives at a level of abstraction that is
close to how language descriptions are normally stated in En-
glish. For this purpose, we extend a well-known logic, called
monadic-second order logic (MSO) [Thomas, 1996; Büchi
and Landweber, 1969], that can describe regular languages,
and we introduce MOSEL, an MSO-equivalent declarative
logic enriched with syntactic sugar. In MOSEL, the languages
L and L1 can be described by the formulas |indOf ‘ab’|= 2
and |indOf ‘ab’| ≥ 2 respectively. Thanks to this formal
representation, we can compute how far apart two MOSEL
descriptions are from each other and translate such a value
into a grade. To compute the distance between two descrip-
tions we use an algorithm for computing the edit distance be-
tween trees [Bille, 2005]. We design two algorithms: the first
one computes the DFA corresponding to a MOSEL descrip-
tion, and conversely the second one computes the MOSEL
description of the language accepted by a DFA. Despite the
high computational complexity of such algorithms, through
several optimizations, we were able to make them work on
examples used to learn automata. We executed the first algo-
rithm on all the DFA assignments appearing in [Hopcroft et
al., 2006], achieving running times below 1 second. On the
same set of assignments we were able to execute the second
algorithm on 95% of the problems, achieving running times
below 5 seconds.

The approach presented in the previous paragraph is able
to capture a particular class of mistakes. However, several
DFAs, such as A3 in Figure 1, do not fall in this class. A3

has the full structure of the correct DFA but state 5 is not
marked as final. A possible MOSEL description of A3 is
|indOf ‘ab’| = 2 ∧ endWt ‘b’ where the second conjunct
indicates that all strings must end with a b. This description

is syntactically far from the description of L causing the cor-
responding grade to be too low. This example shows that
there should be a metric that tells how far A2 is from a cor-
rect DFA. To address this class of mistakes we introduce a
notion of DFA edit distance that given a DFA A and a regular
language R computes how many states and transitions of A
we need to modify in order to obtain a DFA A′ that accepts
R. Such a computation naturally translates into a grade.

The previous techniques cover two broad classes of mis-
takes. However, in several cases they are still not enough.
The language accepted by the DFA A4 in Figure 1 has a com-
plicated MOSEL description and the number of operations
needed to “fix” A4 is quite high (more than 5) because we
need to add a new state and redirect several edges. However,
this solution is on the right track and behaves correctly on
most of the strings. The student just did not notice that in
state 4 the machine does not necessarily read the symbol a
causing strings such as ababb to be rejected. Hence, A4 cor-
rectly rejects all the strings that are not in L, but also rejects
“few” more. Following this intuition we introduce a notion
of language density and we use it to approximate the percent-
age of strings in Σ∗ on which a DFA A misbehaves. Again,
such a quantity naturally translates into a grade. We finally
combine the three techniques to compute a unique grade.

DFA A5, despite being syntactically different from A2,
computes exactly the same language as A2. This similarity
might be hard to notice for a human. While our tool, using
the same approach as for A2, assigned the same grade to both
the attempts, we observed in our experiments that the same
human grader assigned different grades.

We evaluated our tool on DFAs submitted by students at
UIUC and compared the grades generated by the tool to those
provided by human graders. First, we identified several in-
stances in which two identical DFAs were graded differently
by the same grader, while this was not the case for the tool.
Second, we observed that the tool produces grades compa-
rable to those produced by humans. In order to check such
properties, we used statistical metrics to compare the tool
with two human graders, and manually inspected the cases in
which there was a discrepancy between the grades assigned
by the tool and by the human. The resulting data suggests that
the tool grades as well as a human, and we often found that,
in case of a discrepancy, the grade of the human was less fair
than that of the tool.

2 MOSEL: Declarative Descriptions of
Regular Languages

This section provides a preliminary background on DFAs, de-
fines the language MOSEL, and presents algorithms for trans-
forming MOSEL descriptions into DFAs and vice-versa.

2.1 Background on DFAs
A deterministic finite automaton (DFA) over an alphabet Σ
is a tuple A = (Q, q0, δ, F ) where Q is a finite set of states,
q0 ∈ Q is the initial state, δ : Q × Σ 7→ Q is the transi-
tion function, and F ⊆ Q is the set of accepting states. We
define the transitive closure of δ as, for all a ∈ Σ, s ∈ Σ∗,



Indentifiers ID : (a..z)(a..z | A..Z | | . | 0..9)∗

Capital Indentifiers CID : (A..Z)(a..z | A..Z | | . | 0..9)∗

First Order Variables x : ID Second Order Variables X : CID
Character Constant a : (a..z) String Constant s : (a..z)∗

Numbers m,n : (0..9)∗

φ ::= φ C φ | ¬ φ | Q x.φ | QX.φ | true | false | P CMP P | a@P | a@S
| P∈S | |S|%m CMP n | |S| CMP n | begWt ‘s’ | endWt ‘s’ | isEmpty

P ::= x | fst | last | P + 1 | P− 1 | fstOc ‘s’ | lastOc ‘s’
S ::= X | indOf ‘s’ | S SC S | all | | psLt P | psLe P | psGt P | psGe P
C ::= ∧ | . . . Q ::= ∀ | ∃ CMP ::=≤ | . . . SC ::= ∩ | ∪

Figure 2: Concrete syntax of MOSEL.
Predicate Semantics
s, I |= φ1 C φ2 iff (s, I |= φ1) C (s, I |= φ1)
s, I |= ¬φ iff s, I 6|= φ
s, I |= Q x.φ iff Qj ∈ [1..|s|]. (s, I[j/x] |= φ)
s, I |= QX.φ iff QJ ⊆ [1..|s|]. (s, I[J/X] |= φ)
s, I |= true
s, I 6|= false
s, I |= P1 CMP P2 iff P1 ⇒s,I i1 ∧ P2 ⇒s,I i2 ∧ i1 CMP i2
s, I |= a@P iff ∃i, P⇒s,I i ∧ si = a
s, I |= a@S iff ∃J, S⇒s,I J ∧ ∀j ∈ J, sj = a
s, I |= P∈S iff P⇒s,I j ∧ S⇒I J ∧ I(j) ∈ I(J)
s, I |= |S|%m CMP n iff ∃J, S⇒s,I J ∧ |J|%m CMP n
s, I |= |S| CMP n iff ∃J, S⇒s,I J ∧ |J| CMP n
s, I |= begWt ‘s1’ iff s1 ∈ PR(s)
s, I |= endWt ‘s1’ iff s1 ∈ SUF(s)
s, I |= isEmpty iff |s| = 0
Position Semantics
x⇒s,I j iff I(x) = j
fst⇒s,I 1 iff |s| > 0
last⇒s,I |s| iff |s| > 0
P + 1⇒s,I j + 1 iff P⇒s,I j ∧ j < |s|
P− 1⇒s,I j − 1 iff P⇒s,I j ∧ j > 1
fstOc ‘s′’⇒s,I j iff s′∈PR(sj,|s|)∧6 ∃j′<j.s′∈PR(sj′,|s|)

lastOc ‘s′’⇒s,I j iff s′∈PR(sj,|s|)∧6 ∃j′>j.s′∈PR(sj′,|s|)
Set Semantics
X ⇒s,I J iff I(x) = J
indOf ‘s1’⇒s,I J iff J = {j | s1 ∈ PR(sj,|s|)}
S1 SC S2 ⇒s,I J1 SC J2 iff S1 ⇒s,I J1 ∧ S2 ⇒s,I J2

all⇒s,I [1..|s|]
psLt P⇒s,I [1..j − 1] iff P⇒s,I j
psLe P⇒s,I [1..j] iff P⇒s,I j
psGt P⇒s,I [j + 1..|s|] iff P⇒s,I j
psGe P⇒s,I [j..|s|] iff P⇒s,I j

Figure 3: MOSEL operational semantics.

δ∗(q, as) = δ∗(q′, s), if δ(q, a) = q′, and δ∗(q, ε) = q. The
language accepted by A is L(A) = {s | δ∗(q0, s) ∈ F}.

2.2 The Language MOSEL

MOSEL was designed with the goal to be (a) expressive
enough to describe problems that arise in common assign-
ments, (b) simple enough to have a close correspondence to
natural language descriptions so that the syntactic distance
between MOSEL descriptions reflects the distance between
their English language descriptions, and (c) succinct enough
to have small descriptions for common DFA assignments.

The syntax of MOSEL is defined in Figure 2. There are
three kinds of formulas: 1) formulas representing sets of
strings (φ), 2) string positions (P), and 3) sets of string po-
sitions (S).

The semantics of MOSEL is defined in Figure 3. We use
[j..k] for the set {j, j + 1, . . . , k}. Given a string s =
s1 . . . sn, we use si,j for the string si . . . sj , and |s| = n for
the length of s. We also define PR(s) = {s1,j | j ∈ [1..|s|]}
and SUF(s) = {sj,|s| | j ∈ [1..|s|]}.
I is a partial function mapping first order variables to natu-

ral numbers and second order variables to finite sets of natural
numbers. I[a/b] denotes the function such that I[a/b](b) = a

and I[a/b](c) = I(c) if c 6= b. The judgement P ⇒s,I j de-
notes the evaluation of a position formula P to a j ∈ [1..|s|]
Similarly, S⇒s,I J denotes the evaluation of a set formula S
to a set J ⊆ [1..|s|]. The evaluations are partial functions. A
string s is a model of a closed formula φ (without free vari-
ables) iff s, I0 |= φ holds where I0 is the always undefined
interpretation. Given a finite alphabet Σ, φ defines the lan-
guage LΣ(φ) = {s | s ∈ Σ∗ ∧ s, I0 |= φ}.

We illustrate features of this language through some exam-
ples. The 5 languages described in the first column of Table 1
can be described by the following MOSEL formulas:
L1 = begWt ‘a’ ∧ |indOf ‘ab’|% 2 = 1: strings that start

with an a and have and odd number of ab substrings;
L2 = |indOf ‘a’| ≥ 2 ∨ |indOf ‘b’| ≥ 2: strings that con-

tain at least two a’s or at least two b’s;
L3 = a@{x | |psLe x|% 2 = 1}: strings where every odd

position is labeled with an a;
L4 = begWt ‘ab’ ∧ |all|% 3 6= 0: strings that start with ab

and with length not divisible by 3;
L5 = |indOf ‘ab’| = 2: strings that contain the substring ab

exactly twice; and
L6 = |indOf ‘aa’| ≥ 1 ∧ endWt ‘ab’: strings that contain

the substring aa at least once and end with ab.

2.3 From MOSEL to DFAs
Next, we describe how we transform a MOSEL formula φ
over an alphabet Σ into the corresponding DFA Aφ, such that
Aφ describes the same language as φ. Since MOSEL only
adds syntactic sugar to Monadic Second Order Logic (MSO)
over strings, MOSEL formulas can be transformed into equiv-
alent MSO formulas. Given a MOSEL formula φ the first step
of the transformation translates φ into a MOSEL formula φ′
that only contains quantifiers, logic connectives, and formu-
las of the form a@x, x∈X , x1 > x2, and x1 = x2 + 1.
This transformation can be done inductively. This fragment
is exactly MSO over strings [Thomas, 1996]. For exam-
ple the formula |indOf ‘a’|% 2 = 0 of Figure 1 will be
compiled into the MSO formula ∃X.∀w.(w∈X ↔ a@w) ∧
∃Y.∃Z.(∀x.((x∈X ↔ (x∈Y )∨x∈Z))∧(∀x.(x 6∈Y ∨x 6∈Z)∧
(∀x.(x∈X ∧ ∀y.(y < x → y 6∈X) → x∈Z) ∧ ∀x.(x∈Z →
∀y.((y∈X ∧ x < y ∧ ∀z.(z < y ∧ x < z → z 6∈X)) → y ∈
Y ))∧∀x.(x∈Y → ∀y.((y∈X∧x < y∧∀z.(z < y∧x < z →
z 6∈X)) → y∈Z)) ∧ ∀x.((x∈X ∧ ∀y.(x < y → y 6∈X)) →
x∈Y ))))) Next, we use standard techniques to transform an
MSO formula into the corresponding DFA [Henriksen et al.,
1995]. Such techniques inductively generate the DFAs cor-
responding to each sub-formula of φ′ and then combine such
DFAs using automata operations. In the transformation from
MSO to DFA, the alphabet is enriched with bitvectors that
represent the values of the quantified variables, causing the
alphabet to grow exponentially in the number of nested quan-
tifiers.

We implemented the transformation using the Automata
library [Veanes and Bjørner, 2012]. This library relies on
BDDs to succinctly represent large alphabets, making our
transformation efficient in practice. During the inductive
transformation we always keep the minimized DFA in order
to avoid a blow-up in the number of states. For every exercise
E appearing in [Hopcroft et al., 2006], our tool generated the



DFA from the corresponding MOSEL description of E in less
than 1 second.

2.4 From DFAs to MOSEL
While it is well known that every DFA can be transformed
into an equivalent MSO formula, in the standard transforma-
tion from DFA to MSO, the distance between MSO repre-
sentations is not meaningful as it directly reflects the DFA
structure rather than the accepted language. Since our goal
is to use MOSEL descriptions to capture the syntactic differ-
ence between two languages, we use a different approach.
Given a DFA A, we use an iterative deepening search to enu-
merate all possible MOSEL formulas and find the one that
describes L(A). As we showed in the previous subsection,
MOSEL descriptions of common DFA assignments are suc-
cinct. Thanks to such succinctness the brute force approach
works adequately for our purpose.

Since typical formulas have small size/width, we use an
iterative deepening search on the width of a formula. We de-
fine the width W(φ) of a formula φ as max(t,maxn,maxs)
where t is the number of nodes in the expression tree of
φ, maxn is the maximum natural number appearing in φ
(sub-terms |S|% m CMP n and |S| CMP n), and maxs is
the maximum length of a string appearing in φ (sub-terms
lastOc ‘s’, indOf ‘s’, etc.). Figure 4 shows the enumer-
ation algorithm. Given an input DFA A over an alphabet Σ
the algorithm enumerates all the formulas of increasing width
and returns the first formula φ such that LΣ(φ) = L(A).
We next describe some optimizations that make this approach
feasible in practice. In order to check whether a formula φ
is equivalent to the target language, the simplest approach
would be that of using the algorithm of Section 2.3 to gen-
erate the automaton Aφ corresponding to φ and then run a
DFA equivalence algorithm. Such a procedure does not scale
in practice. In our implementation we first check whether φ
behaves correctly on some selected inputs produced by the
function MNSET and, only if it passes this test, we compute
the DFA for φ and perform the equivalence test.

Next, we describe the procedure for generating the input
test set. Given the input DFA A = (Q, q0, δ, F ), we compute
two sets P and N of positive and negative examples respec-
tively, that is, P ⊆ L(A), and N ∩ L(A) = ∅. For every two
states q1, q2 ∈ Q, we add the string sq1pq1 to P , and the string
sq2nq2 to N , where δ∗(q0, sqi) = qi and δ∗(qi, pqi) ∈ F and
δ∗(qi, nqi) 6∈ F . Similarly, for every two states q1, q2 ∈ Q,
and for every a ∈ Σ, we add the string sq1apδ(q1,a) to P and
the string sq2anδ(q2,a) to N . The sets P and N contain at
most |Q|2|Σ| stringsof length at most |Q|. Finally, for ev-
ery DFA B = (QB , q

B
0 , , δB , FB) such that |QB | ≤ |QA|,

it is enough to test QB on the test sets P and N in order
to check whether L(A) 6= L(B). Therefore, if the minimal
DFA corresponding to φ has fewer states than A, we detect
the inequivalence of φ and A by simply testing the formula
on P and N . In our experiments this technique yields a 300X
speed-up.

Next, we optimized the algorithm for common cases in
which the target formula is a disjunction or a conjunction.
When we come across formulas φ1, φ2 which pass the nega-
tive test set N during the enumeration, we check if φ1 ∨ φ2

function SYNTHMOSEL(minimal DFAA, alphabet Σ)
P,N ←MNSet(Σ, A)
for width=1; width++ do

4: for all φ ∈ EnumPred(Σ,width) do
isSuperset← OkOnPos(P, φ,Σ)
isSubset← OkOnNeg(N, φ,Σ)
if isSuperset ∧ isSubset then

8: if getDfa(φ,Σ)==A then
return φ

if isSuperset then
for all φ′ ∈ supersets do

12: φ∧ ← φ ∧ φ′
if OkOnNeg(N, φ∧,Σ) then

if getDfa(φ∧,Σ)==A then
return φ∧

16: supersets.Add(φ)
if isSubset then

for all φ′ ∈ subsets do
φ∨ ← φ ∨ φ′

20: if OkOnPos(P, φ∨,Σ) then
if getDfa(φ∨,Σ)==A then

return φ∨
subsets.Add(φ)

24: function MNSET(alphabet Σ, DFAA): (List〈string〉,List〈string〉)
for all state s1 ∈ A do

for all state s2 ∈ A s.t. s1 6= s2 do
A1 ← A s.t. s1 is new initial state

28: A2 ← A s.t. s2 is new initial state
Adif ← A1 \ A2

ifAdif .IsNotEmpty() then
P .Add(WitnessTo(A, s1).Witness(Adif )

32: N .Add(WitnessTo(A, s2).Witness(Adif )
still part with alphabet

function ENUMPRED(alphabet Σ, int width): List〈formula〉
return all the formulas φ such that W(φ) ≤ width.

36: function OKONPOS(List〈string〉 P , formula φ, alphabet Σ): bool
return true iff ∀s ∈ P , s ∈ LΣ(φ)

function OKONNEG(List〈string〉N , formula φ, alphabet Σ): bool
return true iff ∀s ∈ N , s 6∈ LΣ(φ)

Figure 4: DFA to MOSEL Algorithm.

passes the positive test set P and follow it with an equiva-
lence check if needed. Conjunctions are handled in a similar
manner. This optimization permits to identify formulas of big
width early in the search. For example, the tool was able to
synthesize the formula describing the language in Figure 6 in
less than a second. Without this optimization it would have
taken more than 5 minutes to reach the corresponding formula
in the enumeration.

Finally, we implemented several pruning techniques. First,
using syntactic properties of the input DFA we can avoid enu-
merating some formulas. For example, if the DFA has only
loops of size 1, and 2, the formula | |% 3 = can be stati-
cally ruled out. Secondly, we statically remove several terms
that are equivalent to other terms of smaller width (¬¬φ). For
example the formula ¬|indOf ‘a’|% 2 = 0 is equivalent to
|indOf ‘a’|% 2 = 1 and therefore is not produced by the enu-
meration function. These pruning techniques caused a 500X
speed-up on our test set of 30 examples. We tested the al-
gorithm on the exercises in [Hopcroft et al., 2006] for which
the alphabet only contained two elements.. For each exercise,
given the corresponding DFA solution A, we were able to
generate a MOSEL description of A in less than 5 seconds for
95% of the problems. In few cases, the MOSEL description
was too big and the tool was not able to generate it.



3 An Algorithm for Grading DFA
Constructions

We next address the problem of grading a student attempt.
Given a target language LT , and a student solution As, we
need a metric that tells us how far As is from a correct solu-
tion. Based on our experience related to teaching and grading
DFA constructions, we identified three classes of mistakes:
Problem Syntactic Mistake: the student gives a solution for

a different problem (see (2) and (5) in Figure 1);
Solution Syntactic Mistake: the student omits a transition

or a final state (see (3) in Figure 1); and
Problem Semantic Mistake: the solution is wrong on a

small fraction of the strings (see (4) in Figure 1).
We investigated three approaches that try to address each

class. First, we use the classic notion of tree edit dis-
tance [Gao et al., 2010] to compute the difference between
two MOSEL formulas. Secondly, we introduce a notion of
DFA edit distance to capture the distance between DFAs.
Last, we use the concept of regular language density to com-
pute the difference between two languages when viewed as
sets.

3.1 Problem Syntactic Distance
The following metric captures the case in which the MOSEL
description of the language corresponding to the student
DFAAs is close to the MOSEL description of the target lan-
guage LT . This metric computes how syntactically close
two MOSEL descriptions are. We consider MOSEL formu-
las as the ordered trees induced by their parse trees. Given
a MOSEL formula φ, we call Tφ its parse tree. Given two
ordered trees t1 and t2, their tree edit distance TED(t1, t2) is
defined as the minimum number of edits that can transform
t1 into t2. Given a tree t, an edit is one of the following oper-
ations:
relabel: change the label of a node n;
node deletion: given a node n with parent n′, 1) remove n,

2) place the children of n as children of n′, inserting
them in the “place” left by n; and

node insertion: given a node n, 1) replace a consecutive
subsequence C of children of n with a new node n′, and
2) let C be the children of n′.

We use the algorithm in [Gao et al., 2010] to compute TED.
Next, we compute the distance D(φ1, φ2) between two for-
mulas φ1 and φ2 as TED(Tφ1 , Tφ2). Finally, we compute

WTED(φ1, φ2)
def
=

D(φ1, φ2)

|Tφ2
|

where |T| is the number of nodes in T. In this way, for
the same number of edits, less points are deducted for lan-
guages with a bigger description. See Figure 5 for an exam-
ple of parse tree. Since we are ultimately interested in grad-
ing DFAs, given a DFA As we use the procedure proposed in
§ 2.4 to compute the formula φAs

corresponding to As.
Example 1 Consider the language L corresponding to

φ
def
= |indOf ‘ab’|% 2 = 1 ∧ begWt ‘a’ over the alphabet

Σ = {a, b}. Let’s assume the student provides the DFA A′

that implements the language φ′ def
= |indOf ‘ab’|% 2 = 1 ∨

| |% =

02indOf ‘ ’

a

Figure 5: Parse tree for φ = |indOf ‘a’|% 2 = 0

begWt ‘a’, where ∧ has been replaced by ∨. The problem
syntactic distance will yield the following values:

TED(φ′, φ) = 1 WTED(φ′, φ) = 1/9

In this case applying one node relabeling is enough to “fix”
Tφ′ . We omit the parse tree of φ which contains 9 nodes. �

Since, for each language L, there exist infinitely many
MOSEL formulas describing L, in our algorithm we set a
time-out in the enumeration function and only consider the
formulas discovered in such time span. Given a DFA A,
S(A, s) is the set of formulas describing L(A), discovered
in s seconds. Given two DFAs A1 and A2, we compute

T-WTED(A1, A2, s)
def
= min{WTED(φ1, φ2) | φi ∈ S(Ai, s)}

Finally, consider formula φ. Note that φ∧true, φ∧φ, etc.
are formulas that are equivalent to φ, but their representation
is not minimal. This would cause the grade to be too high
in some cases. Our technique avoids enumerating such non-
minimal formulas. This not only provides a better metric, but
also makes the search process more efficient.

3.2 Solution Syntactic Difference
The following metric captures the case in which the student
DFA As is syntactically close to a correct one, by computing
how many edits are needed to transform As to make it accept
the correct language LT . We define the notion of DFA edit
distance. Given two DFAs A1, A2, we say that the difference
between A1 and A2, DFA-D(A1, A2) is the minimum num-
ber of edits that can transform A1 into some DFA A′1 such
that L(A′1) = L(A2). Given a DFA A, an edit is one of the
following operations:

transition redirection: given a state q and a symbol a ∈ Σ,
update δ(q, a) = q′ to δ(q, a) = q′′ where q′ 6= q′′;

state insertion: insert a new disconnected state q, with
δ(q, a) = q for every a ∈ Σ; and

state relabeling: given a state q, add it or remove it from the
set of final states.

Notice that, since we check for language equivalence instead
of syntactic equivalence, the operation of node deletion is not
necessary in order for two automata to always admit a finite
edit difference. For example, a DFA A1 may be language
equivalent to a DFA A2, but it may contain an extra state
which is unreachable. Due to this fact the difference will be
symmetric.

To take into consideration the severity of a mistake based
on the difficulty of the problem, we compute the quantity

WDFA-D(A1, A2)
def
=

DFA-D(A1, A2)

k + t
where k and t are, respectively, the number of states and tran-
sitions of A2.

Example 2 Consider the DFA A3 in Figure 1 where state 5
is mistakenly marked as non-final. A1 is the correct solution



for the problem. In this case
DFA-D(A3, A1) = 1 WDFA-D(A3, A1) = 1/12+6 = 1/18

since applying one state relabeling will “fix” A3. �
In the tool we compute this metric by trying all the possible

edits and checking for equivalence with a technique similar to
the one presented in Section 2.3.

A similar distance notion graph edit distance [Bille, 2005].
However this metric does not take into account the language
accepted by the DFA.

3.3 Problem Semantic Difference
The following metric captures the case in which the DFA As
behaves correctly on most inputs, by computing what per-
centage of the input strings is correctly accepted/rejected by
As. Given two languages L1 and L2, we define density dif-
ference to be

DEN-DIF(L1, L2)
def
= lim
n→+∞

|((L1 \ L2) ∪ (L2 \ L1)) ∩ Σn|
max(|L2 ∩ Σn|, 1)

Σn denotes the set of strings in Σ∗ of length n. Informally,
for every n, the expression E(n) inside the limit computes
the number of strings of length n that are misclassified by L1

divided by the number of strings of length n in L2. The max
in the denominator is used to avoid divisions by 0. Unfor-
tunately, the density difference is not always defined, as the
limit may not exist.

Example 3 Consider the languages LA corresponding to
|all|% 2 = 0 and LB corresponding to true (i.e. Σ∗) over
the alphabet Σ = {a, b}. The limit DEN-DIF(LA, LB) is not
defined since it keeps oscillating between 0 and 1. �

In practice we compute the approximated density

A-DEN-DIF(L1, L2)
def
=

∑2k
n=0

|((L1\L2)∪(L2\L1))∩Σn|
max(|L2∩Σn|,1)

2k + 1
where k is the number of states of the minimum DFA repre-
senting L2. This approximation is not precise, but it is very
helpful for capturing the cases in which the student forgot a
finite number of strings in its solution (for example only ε).

Example 4 Consider the DFAs A1 and A4 in Figure 1 and
their respective languages L(A1) and L(A4). In this case
A-DEN-DIF(L(A4), L(A1)) = 0.09. This value is the one
used to compute the grade shown in Figure 1. �

Similar notions of density have been proposed in the lit-
erature [Bodirsky et al., 2004; Kozik, 2005]. The density
DEN(L) of a regular language L over the alphabet Σ is de-
fined as the limit

DEN(L)
def
= lim
n→+∞

|L ∩ Σn|
|Σn|

When this limit is defined it is also computable [Bodirsky et
al., 2004] . The conditional language density DEN(L1|L2) of
a given language L1 in a given language L2, such that L1 ⊆
L2, is the limit

DEN(L1|L2)
def
= lim
n→+∞

|L1 ∩ Σn|
|L2 ∩ Σn|

Again, there are languages for which these densities are not
defined, but when are, they can also be computed [Kozik,
2005]. These definitions have good theoretical foundations,
but, unlike our metric, they are undefined for most DFAs.
Also, this penalty scheme is only fair since students should

at least be testing their DFAs on small strings, if not large
ones.

3.4 Combining the Approaches
The aforementioned approaches need to be combined in or-
der to compute the final grade. We are aware of the many
machine learning techniques that could be used for combin-
ing the three features, but instead, we decide to use a simple
combination function for the following reason : 1) in the fu-
ture we would like to extract feedback information from the
computed grade, and 2) in general, only one of the three fea-
ture succeeds in computing a positive grade.

Next, we provide the general schema of the combining
function. First, each deduction v, which ranges between 0
and 1, is scaled to a new value v′ using a formula of the form
v′ := (v + c)2 − c2 where c is a constant. We used a training
set of 60 manually graded attempts to identify the constants c
for the combining function. Finally, we pick the metric which
awarded the highest score.

4 Experimental Evaluation
The aim of our experiment is to evaluate to what extent the
grades given by our tool and those given by human instruc-
tors agree. To do so we collected around 800 attempts at DFA
construction questions by students taking a theory of compu-
tation course for the first time. For each problem we had two
instructors and our tool grade each attempt separately. In or-
der to see how well the tool does we compare statistics that re-
veal variation between human graders and variation between
a human grader and our tool. To measure the extent of agree-
ment between two graders we employ Pearson’s correlation
coefficient. The correlation coefficient is a number between
-1 and 1. A value of 1 indicates that the paired points are
linearly related with a positive slope. When this quantity is
closer to 1 it indicates that the two measurements being com-
pared tend to vary together in the same direction.

In order to obtain a basis for comparing the correlation co-
efficients we also see how a naive grader would perform with
respect to human graders. There could be many ways to de-
fine a naive grader. A simple one that we consider uses the
following grading scheme: (i) it awards near maximum (9 or
10) marks to the correct solutions, and (ii) for incorrect so-
lutions it deducts marks based on the number of states that
are lacking or in excess and adds a small random noise. We
summarize the resulting calculations in Table 1.

4.1 Detailed Analysis
In the following we only consider the first problem where the
language is L1 = {s | s starts with a and has odd number of
ab substrings}. The first column in the averages reads 0.99
for H1-H2 meaning that H1 has awarded, on average, 1 point
more than H2. The next two columns show that H1 is on
average closer to the naive grader N and to the tool T than
it is to H2. However, the standard deviation for H1-N (2.62)
is greater than that for H1-T (1.99), which means that the
grades given by our tool show a lot less variation, and are in
fact closer to H1 more often than N. The Pearson correlation
coefficients shows that the degree of correlation between the



Attempts Average Standard Deviation Pearson Correlation
Problem Tot. Dis. H1-H2 H1-T H1-N H1-H2 H1-T H1-N H1-H2 H1-T H1-N

L1 = {s | s starts with a and has odd number of ab substrings} 131 108 0.99 0.54 0.22 2.06 1.99 2.62 0.87 0.83 0.65
L2 = {s | s has more than 2 a’s or more than 2 b’s} 110 100 -0.66 0.85 0.26 1.80 2.44 2.71 0.90 0.80 0.75
L3 = {s | s where all odd positions contain the symbol a} 96 75 -0.52 0.86 -1.38 1.61 2.67 3.84 0.90 0.74 0.31
L4 = {s | s begins with ab and |s| is not divisible by 3} 92 68 0.40 1.32 0.36 1.68 2.78 2.48 0.81 0.71 0.61
L5 = {s | s contains the substring ab exactly twice} 52 46 0.02 0.19 0.29 2.01 1.88 3.23 0.71 0.79 0.49
L6 = {s | s contains the substring aa and ends with ab} 38 31 -0.50 -1.34 -1.5 2.42 2.90 3.70 0.76 0.63 0.34

Table 1: Comparing grades given by humans and tool. The grades were between 0 and 10. H1 and H2 denote the two human
graders, T the tool, and N the naive grader. A-B denotes the difference between the graders A and B when grading each
individual attempt. For each problem Li the table shows in the order: the number of student attempts, the number of distinct
attempts, the average difference, the standard deviation, and the Pearson’s correlation between single attempt grades.
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Figure 6: Selected attempts for the language L1 = {s | s
starts with a and has odd number of ab substrings}.

tool T and H1 (0.83) is clearly better than that between N
and H1 (0.65), and at the same time comes very close to the
degree of correlation between two human graders H1 and H2

(0.87).
We say that two graders agree on an attempt with a thresh-

old of t if the grades given by the two graders do not dif-
fer by more than t. The plot on the right shows 3 curves.

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

0	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

Pe
rc
en

ta
ge
	  o
f	  a

,
em

pt
s	  w

ith
in
	  X
	  

Grade	  Difference	  

H1-‐N	  
H1-‐H2	  
H1-‐T	  

Each curve com-
pares two graders
and displays how
the percentage of
problems on which
they agree increases
with the threshold
varying from 0 to
10. The three curves
compare T, H2 and
N against H1, and it
is easy to see that our tool T comes to an agreement much
faster than N. More surprisingly, the tool also comes to an
agreement faster than H2.

Figure 6 shows five cases in which either the human
graders and the tool have a discrepancy. In case (1)
the computed language L′1 is described by the formula
|indOf ‘b’|% 2 = 1 ∧ begWt ‘a’. Since the MOSEL de-
scriptions of L1 and L′1 are similar, the tool gives a high grade
for this attempt. However, L′1 has an easier construction than
L1. We attenuate these “false high grades” by deducting ex-
tra points when the size of the minimal DFA corresponding
to the student solution has less states than the target DFA.
We point out that H1 graded (1) and its minimal DFA version
with two different grades, 5 and 3 respectively. A similar
grading inconsistency was observed with A2 and A5 of Fig-

ure 1. Case (2) shows a DFA for which the approximated
language density is low, causing the tool to award this at-
tempt with 7 points. One can argue that this grade is too high
for such a DFA. However, the same DFA as (2) was submit-
ted by multiple students, and, while the tool always awarded
7 points, both human graders were inconsistent: H1 graded
five identical attempts with 4,5,7,7, and 7 points, while H2

awarded 1,1,2,3, and 8 points. Case (3) shows a DFA for
which the DFA edit distance yields a too “generous” grade.
For this DFA it is enough to remove the transition δ(0, b) in
order to obtain a DFA that accepts L1. However, in this case
the mistake is deeper than a simple typo. Case (4) shows a
DFA for which the human awarded too high a score. Even
though this DFA has several syntactic mistakes, H1 awarded
the same grade as for attempt (5), where only one final state
is missing. The grader was probably mislead by the visual
similarity of the two DFAs. For case (5), where state 3 was
mistakenly marked as non-final, both H1 and H2 lacked in
consistency. H1 awarded different grades from 8 to 10 for 7
identical attempts.

4.2 Strengths of the tool
Inspecting the data for the 131 attempts for the language L1

we observed the following: 1) in 6 cases one of the human
graders mistakenly assigned the maximum score to an incor-
rect attempt; 2) in more than 20 out of 34 cases in which T
and H1 were disagreeing by at least 3 points, H1, after review-
ing the attempt, agreed with the grade computed of T; and 3)
in more than 20 cases at least one of the human graders was
inconsistent: i.e. two syntactically equivalent attempts were
graded differently by the same grader.

4.3 Limitations
The tool suffers two types of limitations: behavioral and
structural. The former type concerns the failure of the grading
techniques on some particular examples. An example is the
attempt (3) of Figure 6 where a small DFA edit distance did
not reflect the severity of the mistake. As for the structural
limitations, our techniques are crafted to perform well on
problems appearing in theory of computation books [Sipser,
1996; Hopcroft et al., 2006]. Such techniques do not scale
for DFAs with large alphabets or many states. Moreover the
MOSEL edit distance fails when the language does not admit
a succinct description. For example languages described by
small regular expressions, such as a∗b∗ do not always have a



simple MOSEL description. We do not believe these to be ac-
tual limitations, because such situations typically do not arise
in undergraduate level DFA constructions. However, we plan
on extending our tool to deal with these cases.

5 Related Work
Automata Education JFLAP [Rodger and Finley, 2006]
is a mature system used widely for teaching automata the-
ory and formal language theory. In contrast to our notion of
problem description language MOSEL, JFLAP accepts stan-
dard formal descriptions as input such as regular expressions
and automata and provides feedback in the form of coun-
terexamples. Our system accepts the problem description in
a more natural form, namely the problem description lan-
guage MOSEL (which is also designed to aid an easy trans-
lation from natural language). To the best of our knowledge
JFLAP does not offer automatic grading of DFA construc-
tions. While there is a rich literature on Interactive Tutoring
Systems in both Education and AI community [Lane, 2006;
Woolf, 2007], our work is perhaps the only one besides
JFLAP to focus on DFA constructions.

Specification Repairing Benedikt et.al have proposed a
notion of specification repairing [Benedikt et al., 2011].
Given two languages, an input one and a target one, their
technique finds the minimum number of repairs that must be
applied to a word in the input language in order to ensure that
it belongs to the target one. This approach could also be used
for defining a grading metric. However, we believe that such
metric would not be a good fit for our purposes since it cannot
be associated with any natural feedback.

Automated Grading Singh et.al. have proposed an auto-
matic grading framework for programming problems [Singh
et al., 2013]. Given an error model in the form of expression
rewrite rules, their system uses boolean satisfiability solv-
ing (SAT) based techniques to find the minimal number of
corrections (with respect to the given error model) that can
transform the student’s incorrect program into one that is se-
mantically equivalent to the reference implementation. Our
syntactic edit distance feedback is similar to this proposal.

AI based Programming Tutors There has been a lot of
work done in the AI community for building automated tu-
tors for helping novice programmers learn programming by
providing feedback about semantic errors. These tutoring
systems can be categorized into the following two major
classes: 1) Code-based: LAURA [Adam and Laurent, 1980]
converts teacher’s and student’s program into a graph based
representation and compares them heuristically by applying
program transformations while reporting mismatches as po-
tential bugs. 3) matching-based: TALUS [Murray, 1987]
matches a student’s attempt with a collection of teacher’s al-
gorithms. It first tries to recognize the algorithm used and
then tentatively replaces the top-level expressions in the stu-
dent’s attempt with the recognized algorithm for generating
correction feedback. Such technologies share similar ideas

with our tool in the way they measure distance from a correct
solution.

6 Conclusion
We investigated the problem of grading DFA constructions.
First, we introduced MOSEL, a declarative logic able to pro-
vide succinct and natural descriptions of regular languages
appearing in automata theory textbooks. Second, we pro-
vided algorithms for transforming MOSEL descriptions into
DFAs and vice-versa. Last, we presented three grading tech-
niques based on three different classes of mistakes: 1) a gen-
eralization of the concept of tree edit distance to MOSEL de-
scriptions, able to capture cases in which the student misun-
derstood the problem specification ; 2) a notion of DFA edit
distance, able to capture cases in which the DFA provided
by the student is syntactically close to a correct one; and 3)
an approximated notion of language density, able to capture
cases in which the student solution behaves correctly on al-
most all inputs.

We evaluated our tool on DFAs submitted by real students
and compared the grades generated by the tool to those pro-
vided by human graders. The results are encouraging and
show that the tool grades as well as a human. In fact we plan
on further engineering our tool, deploy it, and soon use it in
real courses. We also plan on storing problem solutions in a
database in order to speed up the grading and fix the few cases
in which the tool does not assign a fair grade. We believe our
techniques can provide foundations for generating automated
feedback for students, and can be also adapted for other types
of constructions. In particular we are working on automati-
cally generating an inductive proof that a given DFA accepts
a given language. Finally, this tool will not replace the need
for teaching assistants (TAs), but it automates a task that of-
ten consumes several TA-hours. Although we only address a
small problem, once a satisfactory grading tool for this prob-
lem is constructed, it will be used for a long time, since the
concept of DFA will be always taught as it is now.
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